Finding Thresholds for Image Segmentation
نویسنده
چکیده
Segmentation methods for images often have cost functions which evaluate the (dis)similarity between pixels or segments. Thresholds on cost values are then used to decide whether or not to grow, join or split segments. The results for a given image critically depend on the selection of the threshold values. In remote sensing, a too low threshold will split up regions of constant ground cover and a too high threshold will join adjacent regions of diierent ground cover. Optimal thresholds can be determined using diierent classes of methods: generating cost value distributions from the original image. obtaining statistical distributions from segmented images. comparing a "true" segmentation with the results of segmentation using a range of thresholds. A so-called "true" segmentation can be derived from human expert segmentations or from maps obtained by ground surveys or segmentation of higher resolution images. Several methods for threshold determination are described for a hybrid segmentation method developed by us. Measures are described for comparison of two segmentations. Results are evaluated using several real and artiicially generated images.
منابع مشابه
Color Reduction in Hand-drawn Persian Carpet Cartoons before Discretization using image segmentation and finding edgy regions
In this paper, we present a method for color reduction of Persian carpet cartoons that increases both speed and accuracy of editing. Carpet cartoons are in two categories: machine-printed and hand-drawn. Hand-drawn cartoons are divided into two groups: before and after discretization. The purpose of this study is color reduction of hand-drawn cartoons before discretization. The proposed algorit...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994